Rapid Parameter Estimation of Gravitational Waves from Compact Binary Coalescence

Soichiro Morisaki
University of Wisconsin-Milwaukee
Masses in the Stellar Graveyard

in Solar Masses

48 LIGO-Virgo Black Holes

EM Black Holes

EM Neutron Stars

2 LIGO-Virgo Neutron Stars

GWTC-2 plot v1.0
LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern
2 neutron star-black holes (NSBHs) reported last week
Analysis workflow of compact binary coalescence

(1) Detection

Data

Matched filtering

Signal-to-Noise Ratio

10

1

0.5
Analysis workflow of compact binary coalescence

(2) Low-latency inference

Produced in ~seconds, but subject to search bias.

Bayestar skymap of GW200115

Low-latency classification of GW200115
Analysis workflow of compact binary coalescence

(3) Bayesian parameter estimation (PE)

- Stochastic sampling of posterior,
 \[p(\theta | d) \propto p(\theta)p(d | \theta). \]
 - \(\theta \): source parameters
 (masses, spins, location etc.)
 - \(d \): data

- More accurate than the initial estimates.
 - Take into account measurement errors.
 - Finer resolution of masses and spins
 - Include more physics (precession, higher-order moments, tides etc.)

Estimated masses of GW200105 and GW200115

PE is computationally costly

The median latency in O3 is 59 hours.

PE of binary neutron star (BNS) can take ~years without any approximate methods.

Too slow for follow-up observations of BNS or NSBH.

More detections make it tough.
Why is PE costly?

PE computes likelihood more than millions of times.

\[
\ln p(d|\theta) = -\frac{1}{2} (d - h(\theta), d - h(\theta)) = (d, h(\theta)) - \frac{1}{2} (h(\theta), h(\theta)) + \text{const.}
\]

\(h(\theta)\): template waveform

The inner products involve the frequency-domain waveform \(\tilde{h}(f_l; \theta)\).

\[
(d, h(\theta)) = \frac{4}{T} \Re \left[\sum_{l=1}^{[(N-1)/2]} \tilde{d}^* \tilde{h}(f_l; \theta) \frac{S_l}{S_l} \right], \quad (h(\theta), h(\theta)) = \frac{4}{T} \Re \left[\sum_{l=1}^{[(N-1)/2]} \frac{|\tilde{h}(f_l; \theta)|^2}{S_l} \right].
\]

\(S_l\): Power spectral density at the \(l\)-th frequency bin
Why is PE costly?

Typically, the evaluations of \(\tilde{h}(f_i; \theta) \) are computationally expensive.

The cost is proportional to the number of frequency samples, which is \(~ (\text{duration of signal}) \times (\text{frequency range of signal})\).

\(\rightarrow\) It is huge for BNS or NSBH signal, which is long and high-frequency.

Two complementary methods to reduce the number of frequency samples where waveforms are evaluated:

1. Focused Reduced Order Quadrature (FROQ)

2. Multi-banding

1. Focused Reduced Order Quadrature (FROQ)

2. Multi-bandning
Reduced Order Quadrature (ROQ)

Waveforms = vectors in L-dimensional space L: number of frequency samples

Subspace of waveforms is much lower dimensional.

Approximate waveforms with $K \ll L$ basis vectors $B_k(f_l)$ ($k = 1, 2, \ldots, K$):

$$\tilde{h}(f_l) \approx \sum_{k=1}^{K} \tilde{h}(F_k) B_k(f_l).$$

The number of waveform evaluations is reduced to $K \rightarrow \sim L/K$ speed up

Speed-up gains of $O(10^2)$ for BNS, reducing the run time of PE to \sim hours.

Focused Reduced Order Quadrature (FROQ)

The parameter space can be significantly restricted from the initial estimates.

Waveforms in the restricted space have similar morphologies.

→ The subspace of waveforms is extremely low dimensional.

→ Much smaller K, and much larger speed-up gains of L/K.

The parameter space can be significantly restricted from the initial estimates.
\[\mu^1 - \mu^2 \]

Combinations whose initial estimates are reliable:

\[\mu^1 = 0.974\psi^0 + 0.209\psi^2 + 0.0840\psi^3, \]
\[\mu^2 = -0.221\psi^0 + 0.823\psi^2 + 0.524\psi^3. \]

\(\psi^0, \psi^2, \psi^3\) are the coefficients in the Post-Newtonian expansion of GW’s phase depending on masses \((m_1, m_2)\) and spin components in parallel with the orbital angular momentum \((\chi_1, \chi_2)\),

\[\Psi(f) = \psi^0 \left(\frac{f}{f_{\text{ref}}} \right)^{-\frac{5}{3}} + \psi^2 \left(\frac{f}{f_{\text{ref}}} \right)^{-1} + \psi^3 \left(\frac{f}{f_{\text{ref}}} \right)^{-\frac{2}{3}}, \]

where \(f_{\text{ref}} = 200\) Hz.

Their range is determined based on search biases and statistical errors.
Formulae:

- Chirp mass:
 \[\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \]

- Mass ratio:
 \[q = \frac{m_2}{m_1} \]

Mass-weighted spin:

\[\beta = \frac{1}{12} \sum_{k=1}^{2} \left[113 \left(\frac{m_k}{m_1 + m_2} \right)^2 + 75 \left(\frac{m_1 m_2}{(m_1 + m_2)^2} \right) \right] \chi_k \]

Posterior samples of BNS:

- \(\mu^1 \)-constant planes
- \(\mu^2 \)-constant planes
Restricted parameter space
Basis sizes

Table: Basis sizes and speed-up gains

| $m_{1,t} = m_{2,t}$ | Low-spin | | | | High-spin | | |
|---|---|---|---|---|
| | Prior range | Size | Speedup | Prior range | Size | Speedup |
| $1M_{\odot}$ | $446.10 \leq \mu^1 \leq 446.38$ | 21 | 28000 | $445.41 \leq \mu^1 \leq 446.75$ | 63 | 9800 |
| | $-95.0 \leq \mu^2 \leq -89.9$ | | | $-98.5 \leq \mu^2 \leq -86.5$ | | |
| $1.4M_{\odot}$ | $254.79 \leq \mu^1 \leq 255.09$ | 21 | 12000 | $254.31 \leq \mu^1 \leq 255.36$ | 43 | 5800 |
| | $-60.8 \leq \mu^2 \leq -55.5$ | | | $-62.9 \leq \mu^2 \leq -52.9$ | | |
| $2M_{\odot}$ | $140.49 \leq \mu^1 \leq 140.76$ | 21 | 4600 | $140.19 \leq \mu^1 \leq 141.05$ | 37 | 2600 |
| | $-39.9 \leq \mu^2 \leq -35.5$ | | | $-41.4 \leq \mu^2 \leq -32.6$ | | |

- Waveform model: TaylorF2
- $m_1, m_2 < 3M_{\odot}$
- Low-spin: $|\chi| < 0.05$, High-spin: $|\chi| < 0.7$
- Basis sizes are $\mathcal{O}(10)$, and speed-up gains are $\mathcal{O}(10^3) - \mathcal{O}(10^4)$.
Performance

- Thousands of simulated BNS signals in O2 data.

- The run time is < 16 minutes for 50%, < 29 minutes for 90% of the signals.

- No statistically significant biases from the restriction of parameter space.

Figure: Histogram of PE run times
Searched area

Figure: Cumulative distribution of searched areas

25 deg2 (Bayestar) ⇒ 19 deg2 (FROQ) at median
Short summary of FROQ

• FROQ builds a compact ROQ basis in narrow parameter space, whose range is restricted based on the initial estimates of masses and spins.

• FROQ relies on the two combinations of masses and spins, μ^1 and μ^2, whose initial estimates are reliable.

• FROQ speeds up PE of BNS signal by a factor of $\mathcal{O}(10^3) - \mathcal{O}(10^4)$, reducing its run time to a few tens of minutes.

• FROQ PE is accurate enough to update the initial localization and classification.

• μ^1 and μ^2 can also be used to make stochastic sampling more efficient (See Eunsub’s poster (P09) for more detail). E. Lee, SM, and T. Hideyuki in preparation.
1. Focused Reduced Order Quadrature (FROQ)

2. Multi-banding
ROQ is not easy-to-use

- Basis vectors $B_k(f_l)$ need to be computed offline with the greedy algorithm,

\[\tilde{h}(f_l) \approx \sum_{k=1}^{K} \tilde{h}(F_k)B_k(f_l). \]

- Computationally costly for long waveforms. Numerically very tough for the third-generation detectors (c.f. 1.4Msun-1.4Msun BNS signal is ~1.8 hours from 5 Hz).

- It needs to be done for each new waveform model.
Multi-banding

- The frequency interval is $1/T$, where T is the duration of data.

- Frequency increases with time. \(\rightarrow\) Time-to-merger decreases with frequency.

- An increasing frequency interval can be used, reducing the number of waveform evaluations at high frequencies.

Figure: gravitational waves from compact binary coalescence
Multi-banding

\[(d, h) = \sum_{b=0}^{B-1} \frac{4}{T} \Re \left[\sum_{l=1}^{[{(N-1)/2}]} \frac{w^{(b)}(f_l) \tilde{d}^{*}_l \tilde{h}(f_l)}{S_l} \right], \]

where \(f_l = l/T \).

Number of frequency bands

Window function of the \(b \)-th band
Multi-banding

\[
\frac{4}{T} \Re \left[\sum_{l=1}^{(N-1)/2} w^{(b)}(f_l) \tilde{d}_l \tilde{h}(f_l) \right] = 2\Delta t \sum_{m=0}^{N-1} D_m h_{m}^{(b)},
\]

where \(D_m \) and \(h_{m}^{(b)} \) are the inverse Fourier transform of \(\tilde{d}_l / S_l \) and \(w^{(b)}(f_l)\tilde{h}(f_l) \).
Multi-banding

\[2\Delta t \sum_{m=0}^{N-1} D_m h_m^{(b)} \approx 2\Delta t \sum_{m=N-M^{(b)}}^{N-1} D_m h_m^{(b)}. \]

\[T^{(b)} = M^{(b)} \Delta t \]
Multi-banding

\[
2\Delta t \sum_{m=N-M(b)}^{N-1} D_m h_m^{(b)} = \frac{4}{T^{(b)}} \Re \left[\sum_l w^{(b)}(f_l^{(b)}) \tilde{D}_l^{(b)*} \tilde{h}(f_l^{(b)}) \right],
\]

where \(T^{(b)} = M^{(b)} \Delta t \) and \(f_l^{(b)} = \frac{l}{T^{(b)}} \).
How to determine frequency bands

Given $T^{(b)}$, the starting frequency $f^{(b)}$ is determined so that the waveform is vanishing at $t < T - T^{(b)}$.

$$\tau(f^{(b)}) + L\sqrt{-\tau'(f^{(b)})} = T^{(b)} + t_{c,\text{min}} - T,$$

where $\tau(f)$ is the time-to-merger, $t_{c,\text{min}}$ is the minimum of coalescence time, and $L \gg 1$ ($L = 5$ is sufficient).

The frequency bands can be constructed on the fly from the minimum chirp mass in the prior range.

Figure: Windowed waveform in the time domain
The speed-up gain is larger for lower f_{low}, whose duration T is longer.

The speed-up gain is ~ 50 for $f_{\text{low}} = 20 \text{ Hz}$ (used for LVK) and ~ 500 for $f_{\text{low}} = 5 \text{ Hz}$ (appropriate for the third-generation detectors).
Short summary of multi-banding

• Multi-banding exploits the chirping nature of signal, whose frequency increases with time.

• For BNS signal, the speed-up gain is \(\sim 50 \) for \(f_{\text{low}} = 20 \text{ Hz} \) and \(\sim 500 \) for \(f_{\text{low}} = 5 \text{ Hz} \).

• It is not as fast as FROQ, but it does not require any offline preparations.
Summary

• Parameter estimation of compact binary coalescence is computationally costly, and can take \(\sim\) years for BNS signal.

• We developed two complementary methods to reduce its cost: Focused Reduced Order Quadrature (FROQ) and Multi-banding.

• FROQ speeds up PE of BNS signal by a factor of \(\mathcal{O}(10^3) - \mathcal{O}(10^4)\), reducing its run time to a few tens of minutes.

• Multi-banding is not as fast as FROQ, but it is easy-to-use as it does not require any offline preparations.
Extra slides
Range of $\mu^1 - \mu^2$

- Mismatch between trigger and true waveforms

\[
\text{Mismatch} \approx \frac{1}{2} \tilde{\Gamma}_{\alpha\beta} (\hat{\psi}^\alpha - \psi^\alpha_t) (\hat{\psi}^\beta - \psi^\beta_t) < 0.03
\]

$\tilde{\Gamma}_{\alpha\beta}$: Fisher matrix \quad $\hat{\psi}^\alpha$: True values \quad ψ^α_t: Trigger values

- Statistical errors

\[
\tilde{\Gamma}_{\alpha\beta} (\psi^\alpha - \hat{\psi}^\alpha) (\psi^\beta - \hat{\psi}^\beta) < \left(\frac{N}{\rho_{\text{net}}} \right)^2
\]

N: 99.9% upper limit of χ^2 with 4 d.o.f. \quad ρ_{net}: Network SNR (12 is applied)

- Prior of masses and spins
Consistency

• X% credible intervals should encompass the true values for X% of the simulated signals.

• The fraction of signals as a function of credible level should be a diagonal line.

• The deviations from a diagonal line are consistent with statistical errors (p-values are 0.13 – 0.84).

Figure: P-P plot for FROQ parameter estimation
Mismatch threshold for broader spin

\[\tilde{\Gamma}_{\alpha\beta} (\hat{\psi}^\alpha - \psi_\alpha^t) (\hat{\psi}^\beta - \psi_\beta^t) < 63.7 \]
Basis size for broader spin

<table>
<thead>
<tr>
<th>Prior range</th>
<th>Size</th>
<th>Speedup</th>
<th>Prior range</th>
<th>Size</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>$445.41 \leq \mu^1 \leq 446.75$</td>
<td>63</td>
<td>9800</td>
<td>$444.34 \leq \mu^1 \leq 447.95$</td>
<td>153</td>
<td>4100</td>
</tr>
<tr>
<td>$-98.5 \leq \mu^2 \leq -86.5$</td>
<td>43</td>
<td>5800</td>
<td>$-126.9 \leq \mu^2 \leq -58.8$</td>
<td>129</td>
<td>2000</td>
</tr>
<tr>
<td>$254.31 \leq \mu^1 \leq 255.36$</td>
<td>43</td>
<td>5800</td>
<td>$253.15 \leq \mu^1 \leq 256.53$</td>
<td>129</td>
<td>2000</td>
</tr>
<tr>
<td>$-62.9 \leq \mu^2 \leq -52.9$</td>
<td>43</td>
<td>5800</td>
<td>$-95.0 \leq \mu^2 \leq -25.8$</td>
<td>129</td>
<td>2000</td>
</tr>
<tr>
<td>$140.19 \leq \mu^1 \leq 141.05$</td>
<td>37</td>
<td>2600</td>
<td>$138.94 \leq \mu^1 \leq 142.14$</td>
<td>107</td>
<td>930</td>
</tr>
<tr>
<td>$-41.4 \leq \mu^2 \leq -32.6$</td>
<td>37</td>
<td>2600</td>
<td>$-64.1 \leq \mu^2 \leq -14.2$</td>
<td>107</td>
<td>930</td>
</tr>
</tbody>
</table>

- $m_1, m_2 < 3M_\odot$

- Template bank covers $|\chi| < 0.05$.

- The spin prior of PE is $|\chi| < 0.7$.
Injection study

• 07:00:00 UTC ~ 23:39:00 UTC on August 19, 2017

• 2000 injections with the intervals of 30 seconds

• \(m_1, m_2 < 2M_\odot, \ |\chi_1|, |\chi_2| < 0.05 \)

• Matched filter with GstLAL software [1]

• Detected if Network SNR >12, the second largest SNR > 5

• Low-spin FROQ with LALInference [2] for the detected injections

P-P plot (broader spin)
Search area (broader spin)

72 \text{ deg}^2 \text{ (Bayestar)} \Rightarrow 13 \text{ deg}^2 \text{ (FROQ) at median}
Application to GW170817

- Available in 13 minutes

- Searched area:
 10.4 deg$^2 \Rightarrow 6.8$ deg2

Orange: Bayestar, green: FROQ, the tick represents the location of the host galaxy
Efficient sampling with $\mu^1 - \mu^2$

- The standard parameters used for stochastic sampling are $(\mathcal{M}, q, \chi_1, \chi_2)$.

- The likelihood is simpler in the $\mu^1 - \mu^2$ space.

- Stochastic sampling with $(\mu^1, \mu^2, q, \chi_2)$ is $\mathcal{O}(10 - 100)$ times faster.

- See the Eunsub’s poster for more detail.

Figure: Autocorrelation functions for the two sets of sampling parameters

Significantly reduced!
Multi-banding

Divide the total frequency range into B bands using overlapping smooth window functions $\{w^{(b)}(f)\}_{b=0}^{B-1}$.

They are constructed so that their sum becomes unity,

$$\sum_{b=0}^{B-1} w^{(b)}(f) = 1.$$
Speed-up gain (including higher-order moments)

Table: Speed-up gains for IMRPhenomD (only 2-2 mode) and IMRPhenomHM (including higher-order moments)

<table>
<thead>
<tr>
<th>f_{low} (Hz)</th>
<th>T (s)</th>
<th>K_{orig}</th>
<th>IMRPhenomD</th>
<th>IMRPhenomHM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$K_{\text{orig}}/K_{\text{MB}}$</td>
<td>Speed up</td>
</tr>
<tr>
<td>20</td>
<td>256</td>
<td>5.2×10^5</td>
<td>4.5×10</td>
<td>5.1×10</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>2.1×10^6</td>
<td>1.2×10^2</td>
<td>1.5×10^2</td>
</tr>
<tr>
<td>5</td>
<td>8192</td>
<td>1.7×10^7</td>
<td>4.4×10^2</td>
<td>4.9×10^2</td>
</tr>
</tbody>
</table>

- Smaller speed-up gains for higher-order moments due to the longer time-to-merger.

- For either case, the speed-up gain is $\mathcal{O}(10)$ for $f_{\text{low}} = 20$ Hz (used for LVK) and $\mathcal{O}(100)$ for $f_{\text{low}} = 5$ Hz (appropriate for the third-generation detectors).
Consistency

- 200 simulated BNS signals
- LIGO-Hanford, LIGO-Livingston, and Virgo with their design sensitivities
- Uniformly distributed up to 100Mpc. The median SNR is 24.
- The deviations from a diagonal line are consistent with statistical errors.

Figure: P-P plot for multi-banding PE
Likelihood errors for GW190814

Likelihood errors due to multi-banding are much smaller than statistical errors.