Probing Diffuse Dark Matter Haloes with Diffractive Lensing of GW

Han Gil Choi
Seoul National University

Han Gil Choi, Chanung Park and Sunghoon Jung,
Outline

I. Motivation

II. Diffractive Gravitational Lensing

III. Detection prospect

IV. Summary
I. Motivation

• Dark matter subhalo

According to Cold dark matter (CDM) theory, DM halo has a lot of subhalos.

Test of CDM -> How many? How steep?

Dark matter halo:
- mass $\sim 10^{12} M_\odot$
- size $\sim O(100 \text{kpc})$

Subhalo:
- Mass $< 10^7 M_\odot$
- Size $< 1 \text{kpc}$

According to Cold dark matter (CDM) theory, DM halo has a lot of subhalos.
I. Motivation

Gravitational lensing of Gravitational Wave Chirps
: Sensitive to low mass compact lens
• Intermediate mass black hole (Lai 2018, Jung 2018)
• Dwarf galaxy (Takahashi 2003, Dai 2018)

• Application to Dark matter subhalo?
 • Subhalos are diffuse → Weak gravity
 → Only one signal perturbed by Diffraction
 = Diffractive lensing

We need to understand Diffractive lensing of Gravitational wave.
II. Diffractive lensing: Wave optics

\[(\nabla^2 + w^2)h(w, \mathbf{x}) = 4w^2 U(\mathbf{x}) h(w, \mathbf{x})\]
Wave propagation

\[\Rightarrow h(w, 0) \sim \left[\frac{w}{2\pi i d_{\text{eff}}} \int d^2 x' e^{iwT(x')} \right] h_0(w, 0)\]
Kirchhoff integral

\[F(w) \equiv \frac{w}{2\pi i d_{\text{eff}}} \int d^2 x' e^{iwT(x')}\]
Lensing amplification factor (F=1 for no lens)

\[h_0(w, 0) : \text{GW without lensing effects}\]
II. Diffractive lensing : Apprx. Solution

\(\tilde{\kappa}(r) \) : (dimless) **Mean surface density** of DM halo within a radius \(r \)

With **weak lensing** assumption, We find that

\[
F(w) \approx 1 + \frac{w}{id_{\text{eff}}} \int_{0}^{\infty} dx x e^{i \frac{wx^2}{d_{\text{eff}}}} \tilde{\kappa}(x)
\]

\[
\Rightarrow F(w) \approx 1 + \bar{\kappa} \left(\frac{r_F e^{i\pi/4}}{\sqrt{2}} \right) \quad r_F \equiv \sqrt{\frac{2d_{\text{eff}}}{w}}
\]

\[
d_{\text{eff}} = \frac{d_l (d_s - d_l)}{d_s} : \text{effective distance between lens and observer}
\]

- \(F(w) \) is equivalent to **DM Halo profile**.

- We can easily find \(F(w) \) **analytically** if mean surface density is given by analytic function.
II. Diffractive lensing: Approx. Solution

Application to more diffuse DM halo profile: Navarro-Frenk-White (NFW) profile

$$\overline{\kappa}(x) = \frac{6\kappa_0}{x^2} \left[\ln \frac{x}{2} + \mathcal{F}(x) \right]$$

$$\mathcal{F}(x) = \begin{cases}
\frac{\text{arctanh}\sqrt{1-x^2}}{\sqrt{1-x^2}} & x < 1 \\
1 & x = 1 \\
\frac{\text{arctan}\sqrt{x^2-1}}{\sqrt{x^2-1}} & x > 1
\end{cases}$$

$$x = r/r_0$$

|F| vs. w

- Solid: Numerical integration
- Dashed: Analytic solution
Due to wave optics effects, a point source has an effective source size (Fresnel length), \(r_F = \sqrt{\frac{2d_{\text{eff}}}{w}} \).

\[
r_F \approx 1.76 \text{pc} \sqrt{\left(\frac{d_{\text{eff}}}{\text{Gpc}} \right) \left(\frac{\text{Hz}}{f} \right)} \sim \text{(sub halo length scale)}
\]

GW chirps from massive Black hole binaries:
low frequency, large source distance, broad spectrum
II. Diffractive lensing : GW spectrum

Diffractive lensing-induced chirping GW spectrum

Lensing by $\kappa(r) \propto r^{-1}$ lens ($M = 10^5 M_\odot, z_l = 0.35$)

![Graph showing strain versus frequency for different BBH masses. Dash: Lensed GW, Solid: Unlensed GW. LISA is marked on the graph.](image-url)
III. Detection prospect: GW detector

- Laser Interferometer space antenna (LISA)
 - Sensitive at 1 mHz

- Big Bang Observer (BBO)
 - Sensitive at 0.1 Hz
III. Detection prospect

\(\dot{N}_L \): Lensing detection per year

- BBO can detect \(10^{3-4} M_{\odot} \) halo lensing \(O(10) \) per year.

 In future, BBO will discriminate CDM and the other DM models.

- LISA and the others are less promising.
 - Lack of **High Signal-to-Noise Ratio**(>1000) BBH sources

\(\dot{N}_L \): Lensing detection per year

BBH Merger rate

Solid : 0.01 \(Gpc^{-3} yr^{-1} \)

Shaded : astrophysical
(Bonetti 2018)
IV. Summary

1. Diffraction effects of GW can be significant due to its large effective source size (Fresnel length r_F).

2. We can detect and measure DM subhalo profile by diffractive lensing of GW since $F(w)$ tell us mass distribution at r_F scale.

3. BBO is most promising GW detectors for low mass halo search, which yields $O(10)$ lensing rate for $10^{3-4}M_\odot$ haloes.